This page no longer updated from 31 October 2001. Latest version can be found at www.astronautix.com

astronautix.com Lox/Hydrazine

Lox/30% Beryllium+Pentaborane in 70% Hydrazine

astronautix.com Lox/30% Beryllium+Pentaborane in 70% Hydrazine





Oxidiser: LOX. Oxidiser Density: 1.14 g/cc. Oxidiser Freezing Point: -219.00 deg C. Oxidiser Boiling Point: -183.00 deg C.

Liquid oxygen was the earliest, cheapest, safest, and eventually the preferred oxidiser for large space launchers. Its main drawback is that it is moderately cryogenic, and therefore not suitable for military uses where storage of the fuelled missile and quick launch are required. Liquid oxygen, as normally supplied, is of 99.5 percent purity and is covered in the United States by Military Specification MIL-P-25508. High purity liquid oxygen has a light blue colour and is transparent. It has no characteristic odour. Liquid oxygen does not burn, but will support combustion vigorously. The liquid is stable; however, mixtures of fuel and liquid oxygen are shock-sensitive. Gaseous oxygen can form mixtures with fuel vapours that can be exploded by static electricity, electric spark, or flame. Liquid oxygen is obtained from air by fractional distillation. The 1959 United. States production of high-purity oxygen was estimated at nearly 2 million tonnes. The cost of liquid oxygen, at that time, ex-works, was $ 0.04 per kg. By the 1980's NASA was paying $ 0.08 per kg.


Fuel: 30% Beryllium+Pentaborane in 70% Hydrazine. Fuel.Comments: High performance fuel developed in Russia. Never flown due to toxicity.

Oxidiser: LOX. Oxidiser Density: 1.14 g/cc. Oxidiser Freezing Point: -219.00 deg C. Oxidiser Boiling Point: -183.00 deg C.

Liquid oxygen was the earliest, cheapest, safest, and eventually the preferred oxidiser for large space launchers. Its main drawback is that it is moderately cryogenic, and therefore not suitable for military uses where storage of the fuelled missile and quick launch are required. Liquid oxygen, as normally supplied, is of 99.5 percent purity and is covered in the United States by Military Specification MIL-P-25508. High purity liquid oxygen has a light blue colour and is transparent. It has no characteristic odour. Liquid oxygen does not burn, but will support combustion vigorously. The liquid is stable; however, mixtures of fuel and liquid oxygen are shock-sensitive. Gaseous oxygen can form mixtures with fuel vapours that can be exploded by static electricity, electric spark, or flame. Liquid oxygen is obtained from air by fractional distillation. The 1959 United. States production of high-purity oxygen was estimated at nearly 2 million tonnes. The cost of liquid oxygen, at that time, ex-works, was $ 0.04 per kg. By the 1980's NASA was paying $ 0.08 per kg.


Fuel: Hydrazine. Fuel Density: 1.01 g/cc. Fuel Freezing Point: 2.00 deg C. Fuel Boiling Point: 113.00 deg C.

Hydrazine (N2H4) found early use as a fuel, but it was quickly replaced by UDMH. It is still used as a monopropellant for satellite station-keeping motors. Hydrazine marketed for rocket propellant contains a minimum of 97 per cent N2H4, the other constituent being primarily water. Hydrazine is a clear, water-white, hygroscopic liquid. The solid is white. Hydrazine a toxic, flammable caustic liquid and a strong reducing agent. Its odour is similar that of ammonia, though less strong. It is slightly soluble in ammonia and methyl-amine. It is soluble in water, methanol, ethanol, UDMH, and ethylenediamine. Hydrazine is manufactured by the Raschig process, which involves the oxidation of ammonia to chloramine, either indirectly with aqueous sodium hypochlorite or directly with chlorine, and subsequent reaction of chloramine with excess ammonia. Raw materials include caustic, ammonia, and chlorine; these are high-tonnage, heavy chemicals. The cost of anhydrous hydrazine in drum quantities in 1959 was $ 7.00 per kg. The projected price, based on large-scale commercial production, was expected to be $ 1.00 per kg. Due to environmental regulations, by 1990 NASA was paying $ 17.00 per kg.

Engines Using Lox/30% Beryllium+Pentaborane in 70% Hydrazine

Eng-engineslink Thrust(vac)-kgf Thrust(vac)-kN Isp-sec Isp (sea level)-sec Designed for Status
RD-550 10,000 98.06 400   Upper Stages Developed 1963-70


Back to Index
Last update 3 May 2001.
Contact Mark Wade with any corrections or comments.
Conditions for use of drawings, pictures, or other materials from this site..
© Mark Wade, 2001 .


Back to Index
Last update 3 May 2001.
Contact Mark Wade with any corrections or comments.
Conditions for use of drawings, pictures, or other materials from this site..
© Mark Wade, 2001 .