This page no longer updated from 31 October 2001. Latest version can be found at MEK

Aelita Mars Exped.
Aelita Mars Exped. - Aelita Mars Expedition

Credit: © Mark Wade. 12,428 bytes. 388 x 179 pixels.

Manufacturer's Designation: Mars Expeditionary Complex. Class: Manned. Type: Mars Expedition. Nation: Russia. Manufacturer: Korolev.

In the post-Apollo moon landing euphoria, NASA was pressing for funding for a manned expedition to Mars. The Soviet leadership reacted in kind. Development of an advanced project for the MK-700 was authorised in Ministry of Defence decree 232 of 30 June 1969. The TTZ specification document was written by the TsNIIMASH and NIITI institutes, and the project was given the code name 'Aelita'. Three design bureaux, led by chief designers Mishin, Yangel, and Chelomei, began competitive design of manned Mars expeditions.

On 28 May 1969 V Mishin, Korolev's successor as Chief Designer of OKB-1, had approved development of the N1M advanced version of the N1 launch vehicle. Feoktistov was tasked with preparing the OKB-1 version of Project Aelita and creating a design that would take advantage of the increased lift of the N1M. This spacecraft was called the Mars Expeditionary Complex (MEK). The MEK was designed to take a crew of from three to six to Mars and back with a total mission duration of 630 days; stay in Mars orbit of 30 days; landing three of the crew on the surface for five to seven days. Primary spacecraft propulsion was to be 15 MW nuclear-electric engines with liquid fuel auxiliaries.

MEK - Different versMEK - Different vers - MEK Mars Expedition Spacecraft of 1969, layout as published by RKK Energia in 1999.

Credit: © Mark Wade. 3,408 bytes. 640 x 57 pixels.

By the end of 1969 Mishin and Yangel dropped out of the competition. This left Chelomei as the only chief designer working on Project Aelita.

The MEK was 175 m long with a maximum span of 17 m. It consisted of, from fore to aft:

MEK SpacecraftMEK Spacecraft - RKK Energia drawing of the 1969 MEK Mars expedition spacecraft.

9,409 bytes. 632 x 116 pixels.

The 150 tonne MEK would be assembled in two launches of the N1M. The first launch would put the MOK and MPK in to low earth orbit. The second would place the YaERDU into a nearby orbit, after which it would automatically dock with the MOK /MPK section. Still unmanned in one variant, the MEK would begin its slow acceleration spiral away from the Earth. In the three-crew version, after the MEK had cleared the Earth's radiation belts, the crew would be launched aboard a Soyuz 7K-L1 / Block D complex by a Proton booster. The Soyuz would rendezvous and dock with the MEK in high earth orbit.

Aelita Mars ShipAelita Mars Ship - Aelita Mars Spacecraft

Credit: © Mark Wade. 1,084 bytes. 399 x 57 pixels.

The MEK would continue to slowly accelerate until it reached earth escape velocity. The crew would have plenty of time to fully check out the systems and abandon ship in their Soyuz or VA lifeboat if any problems developed before Earth escape. After reaching Mars trajectory velocity, the ion engines would shut down and the nuclear reactor would go into a low power coast / spacecraft power generation mode. After 135 days of coasting flight, the engines would begin operating again, taking 61 days to brake into a high Mars orbit and then a further 24 days to spiral into a low polar Mars orbit.

Aelita MEKAelita MEK - The Aelita MEK releases a lander from Mars orbit. Frame from an RKK Energia film that combines the MEK orbiter with the EA lander proposed in the late 1970's.

Credit: RKK Energia. 14,267 bytes. 340 x 237 pixels.

After a week of reconnaissance from orbit, three of the crew would enter the MPK and head for the selected landing site on the Martian surface. Following completion of a week's surface studies, the crew would be boosted into Martian orbit by the MPK ascent stage, and then automatically rendezvous and dock with the MOK. After a further period of studies from orbit, the MEK's ion engines would be restarted and the acceleration spiral away from Mars would begin. It would take 17 days to escape Mars, and the engine would accelerate the MOK for another 66 days until it was placed on a fast Earth return orbit, passing between the orbits of Venus and Mercury. The engine would be restarted for a 17-day brake manoeuvre at perihelion to reduce approach speed with the earth. After a short coast, the engine would be restarted a final time to brake the complex prior to the separation of the VA landing capsule for return to the Earth of the crew and their Martian samples.

MEK - per Model at TMEK - per Model at T - MEK Mars Expedition Spacecraft of 1969, layout as represented by the model on display at TsNIIMASH.

Credit: © Mark Wade. 7,368 bytes. 640 x 88 pixels.

By the end of 1969 Mishin and Yangel dropped out of the competition. At OKB-1 it was felt that a more gradual approach would be more in keeping with state resources. First the N1 launch vehicle, as yet unproven, had to be fully developed. Then the TMK should be thoroughly tested and developed in Earth Orbit. This could be followed by a simple Mars fly by expedition. The MEK or its successor would be left for the next Century.

Craft.Crew Size: 6. Design Life: 630 days. Total Length: 175.0 m. Maximum Diameter: 4.1 m. Total Mass: 150,000 kg. Primary Engine Thrust: 6 kgf. Main Engine Propellants: Xenon. Main Engine Isp: 8,000 sec. Electric system: 15,000.00 total average kW. Electrical System: Nuclear reactor.


Back to Index
Last update 3 May 2001.
Contact Mark Wade with any corrections or comments.
Conditions for use of drawings, pictures, or other materials from this site..
© Mark Wade, 2001 .